Creates a network consisting of an arbitrary number of CNN, LSTM and dense layers. Last layer is a dense layer.
Usage
create_model_lstm_cnn(
maxlen = 50,
dropout_lstm = 0,
recurrent_dropout_lstm = 0,
layer_lstm = NULL,
layer_dense = c(4),
dropout_dense = NULL,
kernel_size = NULL,
filters = NULL,
strides = NULL,
pool_size = NULL,
solver = "adam",
learning_rate = 0.001,
vocabulary_size = 4,
bidirectional = FALSE,
stateful = FALSE,
batch_size = NULL,
compile = TRUE,
padding = "same",
dilation_rate = NULL,
gap = FALSE,
use_bias = TRUE,
residual_block = FALSE,
residual_block_length = 1,
size_reduction_1Dconv = FALSE,
label_input = NULL,
zero_mask = FALSE,
label_smoothing = 0,
label_noise_matrix = NULL,
last_layer_activation = "softmax",
loss_fn = "categorical_crossentropy",
num_output_layers = 1,
auc_metric = FALSE,
f1_metric = FALSE,
bal_acc = FALSE,
verbose = TRUE,
batch_norm_momentum = 0.99,
model_seed = NULL,
mixed_precision = FALSE,
mirrored_strategy = NULL
)
Arguments
- maxlen
Length of predictor sequence.
- dropout_lstm
Fraction of the units to drop for inputs.
- recurrent_dropout_lstm
Fraction of the units to drop for recurrent state.
- layer_lstm
Number of cells per network layer. Can be a scalar or vector.
- layer_dense
Vector specifying number of neurons per dense layer after last LSTM or CNN layer (if no LSTM used).
- dropout_dense
Dropout rates between dense layers. No dropout if
NULL
.- kernel_size
Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g,
rep(3,2)
for two layers and kernel size 3)- filters
Number of filters. For multiple layers, assign a vector.
- strides
Stride values. For multiple layers, assign a vector.
- pool_size
Integer, size of the max pooling windows. For multiple layers, assign a vector.
- solver
Optimization method, options are
"adam", "adagrad", "rmsprop"
or"sgd"
.- learning_rate
Learning rate for optimizer.
- vocabulary_size
Number of unique character in vocabulary.
- bidirectional
Use bidirectional wrapper for lstm layers.
- stateful
Boolean. Whether to use stateful LSTM layer.
- batch_size
Number of samples that are used for one network update. Only used if
stateful = TRUE
.- compile
Whether to compile the model.
- padding
Padding of CNN layers, e.g.
"same", "valid"
or"causal"
.- dilation_rate
Integer, the dilation rate to use for dilated convolution.
- gap
Whether to apply global average pooling after last CNN layer.
- use_bias
Boolean. Usage of bias for CNN layers.
- residual_block
Boolean. If true, the residual connections are used in CNN. It is not used in the first convolutional layer.
- residual_block_length
Integer. Determines how many convolutional layers (or triplets when
size_reduction_1D_conv
isTRUE
) exist- size_reduction_1Dconv
Boolean. When
TRUE
, the number of filters in the convolutional layers is reduced to 1/4 of the number of filters of- label_input
Integer or
NULL
. If notNULL
, adds additional input layer oflabel_input
size.- zero_mask
Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers.
- label_smoothing
Float in [0, 1]. If 0, no smoothing is applied. If > 0, loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. The closer the argument is to 1 the more the labels get smoothed.
- label_noise_matrix
Matrix of label noises. Every row stands for one class and columns for percentage of labels in that class. If first label contains 5 percent wrong labels and second label no noise, then
label_noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE )
- last_layer_activation
Activation function of output layer(s). For example
"sigmoid"
or"softmax"
.- loss_fn
Either
"categorical_crossentropy"
or"binary_crossentropy"
. Iflabel_noise_matrix
given, will use custom"noisy_loss"
.- num_output_layers
Number of output layers.
- auc_metric
Whether to add AUC metric.
- f1_metric
Whether to add F1 metric.
- bal_acc
Whether to add balanced accuracy.
- verbose
Boolean.
- batch_norm_momentum
Momentum for the moving mean and the moving variance.
- model_seed
Set seed for model parameters in tensorflow if not
NULL
.- mixed_precision
Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision).
- mirrored_strategy
Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.