
Package index
- 
          train_model()
- Train neural network on genomic data
- 
          train_model_cpc()
- Train CPC inspired model
- 
          resume_training_from_model_card()
- Continue training from model card
- 
          create_model_genomenet()
- Create GenomeNet Model with Given Architecture Parameters
- 
          create_model_lstm_cnn()
- Create LSTM/CNN network
- 
          create_model_lstm_cnn_multi_input()
- Create LSTM/CNN network that can process multiple samples for one target
- 
          create_model_lstm_cnn_target_middle()
- Create LSTM/CNN network to predict middle part of a sequence
- 
          create_model_lstm_cnn_time_dist()
- Create LSTM/CNN network for combining multiple sequences
- 
          create_model_transformer()
- Create transformer model
- 
          create_model_twin_network()
- Create twin network
- 
          remove_add_layers()
- Remove layers from model and add dense layers
- 
          merge_models()
- Merge two models
- 
          get_output_activations()
- Get activation functions of output layers
- 
          reshape_input()
- Replace input layer
- 
          load_cp()
- Load checkpoint
- 
          compile_model()
- Compile model
- 
          layer_aggregate_time_dist_wrapper()
- Aggregation layer
- 
          layer_pos_embedding_wrapper()
- Layer for positional embedding
- 
          layer_pos_sinusoid_wrapper()
- Layer for positional encoding
- 
          layer_transformer_block_wrapper()
- Transformer block
- 
          conf_matrix_cb()
- Confusion matrix callback.
- 
          early_stopping_time_cb()
- Stop training callback
- 
          validation_after_training_cb()
- Validation after training callback
- 
          reset_states_cb()
- Reset states callback
- 
          remove_checkpoints()
- Remove checkpoints
- 
          model_card_cb()
- Create model card
- 
          noisy_loss_wrapper()
- Loss function for label noise
- 
          balanced_acc_wrapper()
- Balanced accuracy metric
- 
          f1_wrapper()
- F1 metric
- 
          auc_wrapper()
- Mean AUC score
- 
          exp_decay()
- Exponential Decay
- 
          stepdecay()
- Step Decay
- 
          sgdr()
- Stochastic Gradient Descent with Warm Restarts
- 
          focal_loss_multiclass()
- Focal loss for two or more labels
- 
          loss_cl()
- Contrastive loss
- 
          generator_dummy()
- Random data generator
- 
          generator_fasta_label_folder()
- Data generator for fasta/fasta files
- 
          generator_fasta_label_folder_wrapper()
- Generator wrapper
- 
          generator_fasta_label_header_csv()
- Data generator for fasta/fastq files and label targets
- 
          generator_fasta_lm()
- Language model generator for fasta/fastq files
- 
          generator_initialize()
- Initializes generators defined by generator_fasta_label_folderfunction
- 
          generator_random()
- Randomly select samples from fasta files
- 
          generator_rds()
- Rds data generator
- 
          get_generator()
- Wrapper for generator functions
- 
          dataset_from_gen()
- Collect samples from generator and store in rds or pickle file.
- 
          predict_model()
- Make prediction for nucleotide sequence or entries in fasta/fastq file
- 
          summarize_states()
- Create summary of predictions
- 
          predict_with_n_gram()
- Predict the next nucleotide using n-gram
- 
          load_prediction()
- Read states from h5 file
- 
          evaluate_linear()
- Evaluate matrices of true targets and predictions from layer with linear activation.
- 
          evaluate_model()
- Evaluates a trained model on fasta, fastq or rds files
- 
          evaluate_sigmoid()
- Evaluate matrices of true targets and predictions from layer with sigmoid activation.
- 
          evaluate_softmax()
- Evaluate matrices of true targets and predictions from layer with softmax activation.
- 
          plot_roc()
- Plot ROC
- 
          integrated_gradients()
- Compute integrated gradients
- 
          heatmaps_integrated_grad()
- Heatmap of integrated gradient scores
- 
          plot_cm()
- Plot confusion matrix
- 
          seq_encoding_label()
- Encodes integer sequence for label classification.
- 
          seq_encoding_lm()
- Encodes integer sequence for language model
- 
          get_class_weight()
- Estimate frequency of different classes
- 
          get_start_ind()
- Computes start position of samples
- 
          int_to_n_gram()
- Encode sequence of integers to sequence of n-gram
- 
          n_gram_dist()
- Get distribution of n-grams
- 
          n_gram_of_matrix()
- One-hot encoding matrix to n-gram encoding matrix
- 
          reshape_tensor()
- Reshape tensors for set learning
- 
          split_fasta()
- Split fasta file into smaller files.
- 
          one_hot_to_seq()
- Char sequence corresponding to one-hot matrix.
- 
          create_dummy_data()
- Write random sequences to fasta file
- 
          deepGdeepG-package
- deepG for GenomeNet