
Package index
-
train_model() - Train neural network on genomic data
-
train_model_cpc() - Train CPC inspired model
-
resume_training_from_model_card() - Continue training from model card
-
create_model_genomenet() - Create GenomeNet Model with Given Architecture Parameters
-
create_model_lstm_cnn() - Create LSTM/CNN network
-
create_model_lstm_cnn_multi_input() - Create LSTM/CNN network that can process multiple samples for one target
-
create_model_lstm_cnn_target_middle() - Create LSTM/CNN network to predict middle part of a sequence
-
create_model_lstm_cnn_time_dist() - Create LSTM/CNN network for combining multiple sequences
-
create_model_transformer() - Create transformer model
-
create_model_twin_network() - Create twin network
-
remove_add_layers() - Remove layers from model and add dense layers
-
merge_models() - Merge two models
-
get_output_activations() - Get activation functions of output layers
-
reshape_input() - Replace input layer
-
load_cp() - Load checkpoint
-
compile_model() - Compile model
-
layer_aggregate_time_dist_wrapper() - Aggregation layer
-
layer_pos_embedding_wrapper() - Layer for positional embedding
-
layer_pos_sinusoid_wrapper() - Layer for positional encoding
-
layer_transformer_block_wrapper() - Transformer block
-
conf_matrix_cb() - Confusion matrix callback.
-
early_stopping_time_cb() - Stop training callback
-
validation_after_training_cb() - Validation after training callback
-
reset_states_cb() - Reset states callback
-
remove_checkpoints() - Remove checkpoints
-
model_card_cb() - Create model card
-
noisy_loss_wrapper() - Loss function for label noise
-
balanced_acc_wrapper() - Balanced accuracy metric
-
f1_wrapper() - F1 metric
-
auc_wrapper() - Mean AUC score
-
exp_decay() - Exponential Decay
-
stepdecay() - Step Decay
-
sgdr() - Stochastic Gradient Descent with Warm Restarts
-
focal_loss_multiclass() - Focal loss for two or more labels
-
loss_cl() - Contrastive loss
-
generator_dummy() - Random data generator
-
generator_fasta_label_folder() - Data generator for fasta/fasta files
-
generator_fasta_label_folder_wrapper() - Generator wrapper
-
generator_fasta_label_header_csv() - Data generator for fasta/fastq files and label targets
-
generator_fasta_lm() - Language model generator for fasta/fastq files
-
generator_initialize() - Initializes generators defined by
generator_fasta_label_folderfunction
-
generator_random() - Randomly select samples from fasta files
-
generator_rds() - Rds data generator
-
get_generator() - Wrapper for generator functions
-
dataset_from_gen() - Collect samples from generator and store in rds or pickle file.
-
predict_model() - Make prediction for nucleotide sequence or entries in fasta/fastq file
-
summarize_states() - Create summary of predictions
-
predict_with_n_gram() - Predict the next nucleotide using n-gram
-
load_prediction() - Read states from h5 file
-
evaluate_linear() - Evaluate matrices of true targets and predictions from layer with linear activation.
-
evaluate_model() - Evaluates a trained model on fasta, fastq or rds files
-
evaluate_sigmoid() - Evaluate matrices of true targets and predictions from layer with sigmoid activation.
-
evaluate_softmax() - Evaluate matrices of true targets and predictions from layer with softmax activation.
-
plot_roc() - Plot ROC
-
integrated_gradients() - Compute integrated gradients
-
heatmaps_integrated_grad() - Heatmap of integrated gradient scores
-
plot_cm() - Plot confusion matrix
-
seq_encoding_label() - Encodes integer sequence for label classification.
-
seq_encoding_lm() - Encodes integer sequence for language model
-
get_class_weight() - Estimate frequency of different classes
-
get_start_ind() - Computes start position of samples
-
int_to_n_gram() - Encode sequence of integers to sequence of n-gram
-
n_gram_dist() - Get distribution of n-grams
-
n_gram_of_matrix() - One-hot encoding matrix to n-gram encoding matrix
-
reshape_tensor() - Reshape tensors for set learning
-
split_fasta() - Split fasta file into smaller files.
-
one_hot_to_seq() - Char sequence corresponding to one-hot matrix.
-
create_dummy_data() - Write random sequences to fasta file
-
deepGdeepG-package - deepG for GenomeNet