Package index
-
train_model()
- Train neural network on genomic data
-
train_model_cpc()
- Train CPC inspired model
-
resume_training_from_model_card()
- Continue training from model card
-
create_model_genomenet()
- Create GenomeNet Model with Given Architecture Parameters
-
create_model_lstm_cnn()
- Create LSTM/CNN network
-
create_model_lstm_cnn_multi_input()
- Create LSTM/CNN network that can process multiple samples for one target
-
create_model_lstm_cnn_target_middle()
- Create LSTM/CNN network to predict middle part of a sequence
-
create_model_lstm_cnn_time_dist()
- Create LSTM/CNN network for combining multiple sequences
-
create_model_transformer()
- Create transformer model
-
create_model_twin_network()
- Create twin network
-
remove_add_layers()
- Remove layers from model and add dense layers
-
merge_models()
- Merge two models
-
get_output_activations()
- Get activation functions of output layers
-
reshape_input()
- Replace input layer
-
load_cp()
- Load checkpoint
-
compile_model()
- Compile model
-
layer_aggregate_time_dist_wrapper()
- Aggregation layer
-
layer_pos_embedding_wrapper()
- Layer for positional embedding
-
layer_pos_sinusoid_wrapper()
- Layer for positional encoding
-
layer_transformer_block_wrapper()
- Transformer block
-
conf_matrix_cb()
- Confusion matrix callback.
-
early_stopping_time_cb()
- Stop training callback
-
validation_after_training_cb()
- Validation after training callback
-
reset_states_cb()
- Reset states callback
-
remove_checkpoints()
- Remove checkpoints
-
model_card_cb()
- Create model card
-
noisy_loss_wrapper()
- Loss function for label noise
-
balanced_acc_wrapper()
- Balanced accuracy metric
-
f1_wrapper()
- F1 metric
-
auc_wrapper()
- Mean AUC score
-
exp_decay()
- Exponential Decay
-
stepdecay()
- Step Decay
-
sgdr()
- Stochastic Gradient Descent with Warm Restarts
-
focal_loss_multiclass()
- Focal loss for two or more labels
-
loss_cl()
- Contrastive loss
-
generator_dummy()
- Random data generator
-
generator_fasta_label_folder()
- Data generator for fasta/fasta files
-
generator_fasta_label_folder_wrapper()
- Generator wrapper
-
generator_fasta_label_header_csv()
- Data generator for fasta/fastq files and label targets
-
generator_fasta_lm()
- Language model generator for fasta/fastq files
-
generator_initialize()
- Initializes generators defined by
generator_fasta_label_folder
function
-
generator_random()
- Randomly select samples from fasta files
-
generator_rds()
- Rds data generator
-
get_generator()
- Wrapper for generator functions
-
dataset_from_gen()
- Collect samples from generator and store in rds or pickle file.
-
predict_model()
- Make prediction for nucleotide sequence or entries in fasta/fastq file
-
summarize_states()
- Create summary of predictions
-
predict_with_n_gram()
- Predict the next nucleotide using n-gram
-
load_prediction()
- Read states from h5 file
-
evaluate_linear()
- Evaluate matrices of true targets and predictions from layer with linear activation.
-
evaluate_model()
- Evaluates a trained model on fasta, fastq or rds files
-
evaluate_sigmoid()
- Evaluate matrices of true targets and predictions from layer with sigmoid activation.
-
evaluate_softmax()
- Evaluate matrices of true targets and predictions from layer with softmax activation.
-
plot_roc()
- Plot ROC
-
integrated_gradients()
- Compute integrated gradients
-
heatmaps_integrated_grad()
- Heatmap of integrated gradient scores
-
plot_cm()
- Plot confusion matrix
-
seq_encoding_label()
- Encodes integer sequence for label classification.
-
seq_encoding_lm()
- Encodes integer sequence for language model
-
get_class_weight()
- Estimate frequency of different classes
-
get_start_ind()
- Computes start position of samples
-
int_to_n_gram()
- Encode sequence of integers to sequence of n-gram
-
n_gram_dist()
- Get distribution of n-grams
-
n_gram_of_matrix()
- One-hot encoding matrix to n-gram encoding matrix
-
reshape_tensor()
- Reshape tensors for set learning
-
split_fasta()
- Split fasta file into smaller files.
-
one_hot_to_seq()
- Char sequence corresponding to one-hot matrix.
-
create_dummy_data()
- Write random sequences to fasta file
-
deepG
deepG-package
- deepG for GenomeNet