Twin network can be trained to maximize the distance between embeddings of inputs. Implements approach as described here.
Usage
create_model_twin_network(
  maxlen = 50,
  dropout_lstm = 0,
  recurrent_dropout_lstm = 0,
  layer_lstm = NULL,
  layer_dense = c(4),
  dropout_dense = NULL,
  kernel_size = NULL,
  filters = NULL,
  strides = NULL,
  pool_size = NULL,
  solver = "adam",
  learning_rate = 0.001,
  vocabulary_size = 4,
  bidirectional = FALSE,
  compile = TRUE,
  padding = "same",
  dilation_rate = NULL,
  gap_inputs = NULL,
  use_bias = TRUE,
  residual_block = FALSE,
  residual_block_length = 1,
  size_reduction_1Dconv = FALSE,
  zero_mask = FALSE,
  verbose = TRUE,
  batch_norm_momentum = 0.99,
  distance_method = "euclidean",
  last_layer_activation = "sigmoid",
  loss_fn = loss_cl(margin = 1),
  metrics = "acc",
  model_seed = NULL,
  mixed_precision = FALSE,
  mirrored_strategy = NULL
)Arguments
- maxlen
- Length of predictor sequence. 
- dropout_lstm
- Fraction of the units to drop for inputs. 
- recurrent_dropout_lstm
- Fraction of the units to drop for recurrent state. 
- layer_lstm
- Number of cells per network layer. Can be a scalar or vector. 
- layer_dense
- Vector containing number of neurons per dense layer, before euclidean distance layer. 
- dropout_dense
- Dropout rates between dense layers. No dropout if - NULL.
- kernel_size
- Size of 1d convolutional layers. For multiple layers, assign a vector. (e.g, - rep(3,2)for two layers and kernel size 3)
- filters
- Number of filters. For multiple layers, assign a vector. 
- strides
- Stride values. For multiple layers, assign a vector. 
- pool_size
- Integer, size of the max pooling windows. For multiple layers, assign a vector. 
- solver
- Optimization method, options are - "adam", "adagrad", "rmsprop"or- "sgd".
- learning_rate
- Learning rate for optimizer. 
- vocabulary_size
- Number of unique character in vocabulary. 
- bidirectional
- Use bidirectional wrapper for lstm layers. 
- compile
- Whether to compile the model. 
- padding
- Padding of CNN layers, e.g. - "same", "valid"or- "causal".
- dilation_rate
- Integer, the dilation rate to use for dilated convolution. 
- gap_inputs
- Global pooling method to apply. Same options as for - flatten_methodargument in create_model_transformer function.
- use_bias
- Boolean. Usage of bias for CNN layers. 
- residual_block
- Boolean. If true, the residual connections are used in CNN. It is not used in the first convolutional layer. 
- residual_block_length
- Integer. Determines how many convolutional layers (or triplets when - size_reduction_1D_convis- TRUE) exist
- size_reduction_1Dconv
- Boolean. When - TRUE, the number of filters in the convolutional layers is reduced to 1/4 of the number of filters of
- zero_mask
- Boolean, whether to apply zero masking before LSTM layer. Only used if model does not use any CNN layers. 
- verbose
- Boolean. 
- batch_norm_momentum
- Momentum for the moving mean and the moving variance. 
- distance_method
- Either "euclidean" or "cosine". 
- last_layer_activation
- Activation function of output layer(s). For example - "sigmoid"or- "softmax".
- loss_fn
- Either - "categorical_crossentropy"or- "binary_crossentropy". If- label_noise_matrixgiven, will use custom- "noisy_loss".
- metrics
- Vector or list of metrics. 
- model_seed
- Set seed for model parameters in tensorflow if not - NULL.
- mixed_precision
- Whether to use mixed precision (https://www.tensorflow.org/guide/mixed_precision). 
- mirrored_strategy
- Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available. 
