Compute accuracy, binary crossentropy and (optionally) AUC or AUPRC, given predictions and
true targets. Outputs columnwise average.
     
    
    Usage
    evaluate_sigmoid(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL)
 
    
    Arguments
- y
- Matrix of true target. 
- y_conf
- Matrix of predictions. 
- auc
- Whether to include AUC metric. 
- auprc
- Whether to include AUPRC metric. 
- label_names
- Names of corresponding labels. Length must be equal to number of columns of - y.
 
 
    
    Value
    A list of evaluation results.
     
    
    Examples
    if (FALSE) { # reticulate::py_module_available("tensorflow")
y <- matrix(sample(c(0, 1), 30, replace = TRUE), ncol = 3)
y_conf <- matrix(runif(n = 30), ncol = 3)
evaluate_sigmoid(y, y_conf, auc = TRUE, auprc = TRUE)
}