Skip to contents

Compute accuracy, binary crossentropy and (optionally) AUC or AUPRC, given predictions and true targets. Outputs columnwise average.

Usage

evaluate_sigmoid(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL)

Arguments

y

Matrix of true target.

y_conf

Matrix of predictions.

auc

Whether to include AUC metric.

auprc

Whether to include AUPRC metric.

label_names

Names of corresponding labels. Length must be equal to number of columns of y.

Value

A list of evaluation results.

Examples

if (FALSE) { # reticulate::py_module_available("tensorflow")
y <- matrix(sample(c(0, 1), 30, replace = TRUE), ncol = 3)
y_conf <- matrix(runif(n = 30), ncol = 3)
evaluate_sigmoid(y, y_conf, auc = TRUE, auprc = TRUE)
}