Compute confusion matrix, accuracy, categorical crossentropy and (optionally) AUC or AUPRC, given predictions and
true targets. AUC and AUPRC only possible for 2 targets.
     
    
    Usage
    evaluate_softmax(y, y_conf, auc = FALSE, auprc = FALSE, label_names = NULL)
 
    
    Arguments
- y
- Matrix of true target. 
- y_conf
- Matrix of predictions. 
- auc
- Whether to include AUC metric. Only possible for 2 targets. 
- auprc
- Whether to include AUPRC metric. Only possible for 2 targets. 
- label_names
- Names of corresponding labels. Length must be equal to number of columns of - y.
 
 
    
    Value
    A list of evaluation results.
     
    
    Examples
    if (FALSE) { # reticulate::py_module_available("tensorflow")
y <- matrix(c(1, 0, 0, 0, 1, 1), ncol = 2)
y_conf <- matrix(c(0.3, 0.5, 0.1, 0.7, 0.5, 0.9), ncol = 2)
evaluate_softmax(y, y_conf, auc = TRUE, auprc = TRUE, label_names = c("A", "B")) 
}