Combines generators created by generator_initialize into a single generator.
Usage
generator_fasta_label_folder_wrapper(
  val,
  batch_size = NULL,
  path = NULL,
  voc_len = NULL,
  maxlen = NULL,
  gen_list = NULL,
  set_learning = NULL
)Arguments
- val
- Train or validation generator. 
- batch_size
- Number of samples in one batch. 
- path
- Path to input files. 
- voc_len
- Length of vocabulary. 
- maxlen
- Length of predictor sequence. 
- gen_list
- List of generator functions. 
- set_learning
- When you want to assign one label to set of samples. Only implemented for - train_type = "label_folder". Input is a list with the following parameters- samples_per_target: how many samples to use for one target.
- maxlen: length of one sample.
- reshape_mode:- "time_dist", "multi_input"or- "concat".- If - reshape_modeis- "multi_input", generator will produce- samples_per_targetseparate inputs, each of length- maxlen(model should have- samples_per_targetinput layers).
- If reshape_mode is - "time_dist", generator will produce a 4D input array. The dimensions correspond to- (batch_size, samples_per_target, maxlen, length(vocabulary)).
- If - reshape_modeis- "concat", generator will concatenate- samples_per_targetsequences of length- maxlento one long sequence.
 
- If - reshape_modeis- "concat", there is an additional- buffer_lenargument. If- buffer_lenis an integer, the subsequences are interspaced with- buffer_lenrows. The input length is (- maxlen\(*\)- samples_per_target) +- buffer_len\(*\) (- samples_per_target- 1).
 
Examples
if (FALSE) { # reticulate::py_module_available("tensorflow")
# create two folders with dummy fasta files
path_input_1 <- tempfile()
dir.create(path_input_1)
create_dummy_data(file_path = path_input_1, num_files = 2, seq_length = 5,
                  num_seq = 2, vocabulary = c("a", "c", "g", "t"))
path_input_2 <- tempfile()
dir.create(path_input_2)
create_dummy_data(file_path = path_input_2, num_files = 3, seq_length = 7,
                  num_seq = 5, vocabulary = c("a", "c", "g", "t"))
maxlen <- 5
p <- c(path_input_1, path_input_1)
gen_list <- generator_initialize(directories = p,
                                 batch_size = 4, maxlen = maxlen)
gen <- generator_fasta_label_folder_wrapper(val = FALSE, batch_size = 8,
                                            path = p, voc_len = 4, 
                                            maxlen = maxlen,
                                            gen_list = gen_list)
z <- gen()
dim(z[[1]])
z[[2]]
}
