Skip to contents

Implements approach from this paper and code from here. Can be used if labeled data contains noise, i.e. some of the data is labeled wrong.

Usage

noisy_loss_wrapper(noise_matrix)

Arguments

noise_matrix

Matrix of noise distribution.

Value

A function implementing noisy loss.

Examples

if (FALSE) { # reticulate::py_module_available("tensorflow")
# If first label contains 5% wrong labels and second label no noise
noise_matrix <- matrix(c(0.95, 0.05, 0, 1), nrow = 2, byrow = TRUE)
noisy_loss <- noisy_loss_wrapper(noise_matrix)
}