Create summary data frame for confidence predictions over 1 or several state files or a data frame. Columns in file or data frame should be confidence predictions for one class, i.e. each rows should sum to 1 and have nonnegative entries. Output data frame contains average confidence scores, max score and percentage of votes for each class.
Examples
m <- c(0.9, 0.1, 0.2, 0.01,
0.05, 0.7, 0.2, 0,
0.05, 0.2, 0.6, 0.99) %>% matrix(ncol = 3)
label_names <- paste0("class_", 1:3)
df <- as.data.frame(m)
pred_summary <- summarize_states(label_names = label_names, df = df)
pred_summary
#> file_name mean_conf_class_1 mean_conf_class_2 mean_conf_class_3
#> <lgcl> <num> <num> <num>
#> 1: NA 0.3025 0.2375 0.46
#> max_conf_class_1 max_conf_class_2 max_conf_class_3 vote_perc_class_1
#> <num> <num> <num> <num>
#> 1: 0.9 0.7 0.99 0.25
#> vote_perc_class_2 vote_perc_class_3 mean_prediction max_prediction
#> <num> <num> <char> <char>
#> 1: 0.25 0.5 class_3 class_3
#> vote_prediction num_prediction
#> <char> <int>
#> 1: class_3 4