Load checkpoint from directory. Chooses best checkpoint based on some condition. Condition can be best accuracy, best loss, last epoch number or a specified epoch number.
Usage
load_cp(
  cp_path,
  cp_filter = "last_ep",
  ep_index = NULL,
  compile = FALSE,
  learning_rate = 0.01,
  solver = "adam",
  re_compile = FALSE,
  loss = "categorical_crossentropy",
  add_custom_object = NULL,
  margin = 1,
  verbose = TRUE,
  mirrored_strategy = FALSE
)Arguments
- cp_path
- A directory containing checkpoints or a single checkpoint file. If a directory, choose checkpoint based on - cp_filteror- ep_index.
- cp_filter
- Condition to choose checkpoint if - cp_pathis a directory. Either "acc" for best validation accuracy, "loss" for best validation loss or "last_ep" for last epoch.
- ep_index
- Load checkpoint from specific epoch number. If not - NULL, has priority over- cp_filter.
- compile
- Whether to load compiled model. 
- learning_rate
- Learning rate for optimizer. 
- solver
- Optimization method, options are - "adam", "adagrad", "rmsprop"or- "sgd".
- re_compile
- Whether to compile model with parameters from - learning_rate,- solverand- loss.
- loss
- Loss function. Only used if model gets compiled. 
- add_custom_object
- Named list of custom objects. 
- margin
- Margin for contrastive loss, see loss_cl. 
- verbose
- Whether to print chosen checkpoint path. 
- mirrored_strategy
- Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available. 
Examples
if (FALSE) { # reticulate::py_module_available("tensorflow")
model <- create_model_lstm_cnn(layer_lstm = 8)
checkpoint_folder <- tempfile()
dir.create(checkpoint_folder)
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.007-val_loss11.07-val_acc0.6.hdf5'))
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.019-val_loss8.74-val_acc0.7.hdf5'))
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.025-val_loss0.03-val_acc0.8.hdf5'))
model <- load_cp(cp_path = checkpoint_folder, cp_filter = "last_ep")
}
