Load checkpoint from directory. Chooses best checkpoint based on some condition. Condition can be best accuracy, best loss, last epoch number or a specified epoch number.
Usage
load_cp(
cp_path,
cp_filter = "last_ep",
ep_index = NULL,
compile = FALSE,
learning_rate = 0.01,
solver = "adam",
re_compile = FALSE,
loss = "categorical_crossentropy",
add_custom_object = NULL,
margin = 1,
verbose = TRUE,
mirrored_strategy = FALSE
)
Arguments
- cp_path
A directory containing checkpoints or a single checkpoint file. If a directory, choose checkpoint based on
cp_filter
orep_index
.- cp_filter
Condition to choose checkpoint if
cp_path
is a directory. Either "acc" for best validation accuracy, "loss" for best validation loss or "last_ep" for last epoch.- ep_index
Load checkpoint from specific epoch number. If not
NULL
, has priority overcp_filter
.- compile
Whether to load compiled model.
- learning_rate
Learning rate for optimizer.
- solver
Optimization method, options are
"adam", "adagrad", "rmsprop"
or"sgd"
.- re_compile
Whether to compile model with parameters from
learning_rate
,solver
andloss
.- loss
Loss function. Only used if model gets compiled.
- add_custom_object
Named list of custom objects.
- margin
Margin for contrastive loss, see loss_cl.
- verbose
Whether to print chosen checkpoint path.
- mirrored_strategy
Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available.
Examples
if (FALSE) { # reticulate::py_module_available("tensorflow")
model <- create_model_lstm_cnn(layer_lstm = 8)
checkpoint_folder <- tempfile()
dir.create(checkpoint_folder)
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.007-val_loss11.07-val_acc0.6.hdf5'))
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.019-val_loss8.74-val_acc0.7.hdf5'))
keras::save_model_hdf5(model, file.path(checkpoint_folder, 'Ep.025-val_loss0.03-val_acc0.8.hdf5'))
model <- load_cp(cp_path = checkpoint_folder, cp_filter = "last_ep")
}