Use information from model card to resume from the corresponding checkpoint using the same training arguments.
Usage
resume_training_from_model_card(
  path_model_card,
  seed = NULL,
  epoch = NULL,
  new_run_name = NULL,
  new_args = NULL,
  new_compile = NULL,
  use_mirrored_strategy = NULL,
  unfreeze = FALSE,
  verbose = FALSE
)Arguments
- path_model_card
- Path to model card to resume training from. 
- seed
- Seed for reproducible results. If - NULL, set random seed.
- epoch
- Epoch to resume from. If - NULL, use last epoch.
- new_run_name
- New run name. If - NULL, new run name is old run name + '_cont'.
- new_args
- Named list of arguments to overwrite. Will use previous arguments from model card otherwise. For example, if you want to change the batch size and padding option: - new_args = list(batch_size = 6, padding = TRUE).
- new_compile
- List of arguments to compile the model again. If - NULL, use compiled model from checkpoint. Example:- new_compile = list(loss = 'binary_crossentropy', metrics = 'acc', optimizer = keras::optimizer_adam())
- use_mirrored_strategy
- Whether to use distributed mirrored strategy. If NULL, will use distributed mirrored strategy only if >1 GPU available. 
- unfreeze
- If - TRUE, set trainable attribute of model to- TRUE(unfreeze weights).
- verbose
- Whether to print all training arguments. 
Examples
if (FALSE) { # reticulate::py_module_available("tensorflow")
# create dummy data and temp directories
path_train_1 <- tempfile()
path_train_2 <- tempfile()
path_val_1 <- tempfile()
path_val_2 <- tempfile()
path_checkpoint <- tempfile()
dir.create(path_checkpoint)
path_model_card <- tempfile()
dir.create(path_model_card)
for (current_path in c(path_train_1, path_train_2,
                       path_val_1, path_val_2)) {
  dir.create(current_path)
  create_dummy_data(file_path = current_path,
                    num_files = 3,
                    seq_length = 10,
                    num_seq = 5,
                    vocabulary = c("a", "c", "g", "t"))
}
# create model
model <- create_model_lstm_cnn(layer_lstm = 8, layer_dense = 2, maxlen = 5)
# train model
run_name <- 'test_run_1'
hist <- train_model(train_type = "label_folder",
                    run_name = run_name,
                    path_checkpoint = path_checkpoint,
                    model_card = list(path_model_card = path_model_card, description = 'test run'),
                    model = model,
                    path = c(path_train_1, path_train_2),
                    path_val = c(path_val_1, path_val_2),
                    batch_size = 8,
                    epochs = 3,
                    steps_per_epoch = 6,
                    vocabulary_label = c("label_1", "label_2"))
# resume training
resume_training_from_model_card(path_model_card = file.path(path_model_card, run_name))
}
